Continual Learning Working Group Talk
CEPSR 620 Schapiro 530 W. 120th StTitle: Continual learning, machine self-reference, and the problem of problem-awareness Abstract: Continual learning (CL) without forgetting has been a long-standing problem in machine learning with neural networks. Here I will bring a new perspective by looking at learning algorithms (LAs) as memory mechanisms with their own decision making problem. I will present a natural solution to CL…
CTN Claudia Clopath
Zuckerman Institute - L5-084 3227 Broadway, New York, NY, United StatesTitle: Feedback-based motor control can guide plasticity and drive rapid learning Abstract: Animals use afferent feedback to rapidly correct ongoing movements in the presence of a perturbation. Repeated exposure to a predictable perturbation leads to behavioural adaptation that counteracts its effects. Primary motor cortex (M1) is intimately involved in both processes, integrating inputs from various sensorimotor brain…
CTN: Sebastian Seung
Zuckerman Institute - L5-084 3227 Broadway, New York, NY, United StatesTitle: Insights into vision from interpreting a neuronal wiring diagram Host: Marcus Triplett Abstract: In 2023, the FlyWire Consortium released the neuronal wiring diagram of an adult fly brain. This contains as a corollary the first complete wiring diagram of a visual system, which has been used to identify all 200+ cell types that are intrinsic to the…
CTN: Stephanie Palmer
Zuckerman Institute - L5-084 3227 Broadway, New York, NY, United StatesTitle: How behavioral and evolutionary constraints sculpt early visual processing Abstract: Biological systems must selectively encode partial information about the environment, as dictated by the capacity constraints at work in all living organisms. For example, we cannot see every feature of the light field that reaches our eyes; temporal resolution is limited by transmission noise and delays,…
Continual Learning Working Group: Kick Off
CEPSR 620 Schapiro 530 W. 120th StSpeaker: Mengye Ren Title: Lifelong and Human-like Learning in Foundation Models Abstract: Real-world agents, including humans, learn from online, lifelong experiences. However, today’s foundation models primarily acquire knowledge through offline, iid learning, while relying on in-context learning for most online adaptation. It is crucial to equip foundation models with lifelong and human-like learning abilities to enable more flexible…
ARNI NSF Site Visit
Innovation Hub Tang Family Hall - 2276 12TH AVENUE – FLOOR 02NSF Site Visit - The NSF team will evaluate the progress and achievements of ARNI’s projects to date and provide recommendations to steer future directions and funding for the project. If you are interested in learning more about ARNI over-all, join this Zoom link from 9am to 12pm or 2pm to 4:30pm.
CTN: Eva Dyer
Zuckerman Institute - L5-084 3227 Broadway, New York, NY, United StatesTitle: Large-scale pretraining on neural data allows for transfer across individuals, tasks and species Abstract: As neuroscience datasets grow in size and complexity, integrating diverse data sources to achieve a comprehensive understanding of brain function presents both an opportunity and a challenge. In this talk, I will introduce our approach to developing a multi-source foundation model for…
Continual Learning Working Group: Haozhe Shan
CEPSR 620 Schapiro 530 W. 120th StSpeaker: Haozhe Shan Title: A theory of continual learning in deep neural networks: task relations, network architecture and learning procedure Abstract: Imagine listening to this talk and afterwards forgetting everything else you’ve ever learned. This absurd scenario would be commonplace if the brain could not perform continual learning (CL) – acquiring new skills and knowledge without…
Multi-resource-cost Optimization for Neural Networks Models Working Group (NNMS): Tom Griffiths
Zuckerman Institute - L3-079 3227 Broadway, New York, NY, United StatesTitle: Bounded optimality: A cognitive perspective on neural computation with resource limitations
Multi-resource-cost Optimization for Neural Networks Models Working Group (NNMS): Simon Laughlin
Zuckerman Institute - L3-079 3227 Broadway, New York, NY, United StatesTitle: Neuronal energy consumption: basic measures and trade-offs, and their effects on efficiency Zoom: https://columbiauniversity.zoom.us/j/98299154214?pwd=1J3J0lEpF6XdqHkHy02c7LuD6xUWx2.1
Continual Learning Working Group: Amogh Inamdar
CSB 488Title: Taskonomy: Disentangling Task Transfer Learning Abstract: TBD Link: http://taskonomy.stanford.edu/taskonomy_CVPR2018.pdf
CTN: Brenden Lake
Zuckerman Institute - L3-079 3227 Broadway, New York, NY, United StatesTitle: Meta-learning for more powerful behavioral modeling Abstract: Two modeling paradigms have historically been in tension: Bayesian models provide an elegant way to incorporate prior knowledge, but they make simplifying and constraining assumptions; on the other hand, neural networks provide great modeling flexibility, but they make it difficult to incorporate prior knowledge. Here I describe how to…